The generator matrix

 1  0  1  1  1  1  1  X  1 2X  1  1  1  1  1 2X  6  1  1  1  1 X+6  1  1  1  3  1  1 2X  1  1  1  1  1  1 2X+3 X+3  1  1  1  1  1  X  1  1  1  1  1  1 2X+6  3  1  1 X+3  X  X  1  1  1  1  1  1  1  1  1  6  1  0  1  1  1  1 2X+6  1  3 2X+6  6  1  1  X  1
 0  1  1  8  3 2X+1  8  1  8  1  0 2X+4 2X+4  3 X+8  1  1 X+1  0 X+2  0  1  1 2X+2  6  1  5 2X+1  1 2X+1  8 X+3  1 X+8 X+3  1  1 2X+2  7  4 2X+3 X+2  1  5 X+4 2X+3  4 X+8  8  1  1 2X 2X+4  1  1  1 2X+2  7 2X+5 X+7 X+5 2X  1 X+3 2X+4  1 2X+2  1 X+6  5  5 2X+2  1  0  1  1  1  5  X  3 X+1
 0  0 2X  0  3  0  0  6  6  0  3  3  3 X+3 X+3 2X+6  X X+6 2X+6 2X+6 X+3 X+6 2X+6  X 2X+3  X 2X+6  X 2X+6 2X 2X+6  X X+6 X+3 2X+6 2X+3  6  0 X+6 2X+3  6 2X 2X  X  0 X+3  X  3 X+3 X+3 2X+3  3  6  0 X+3  X  6  3 X+3 2X+3 2X+3 2X  X  X 2X  0 X+3 2X+6 X+6 2X+6 2X+3 X+6  6  0 2X  6 X+6 X+6 2X+3 X+6 2X+6
 0  0  0  X X+3 X+6  6  X 2X+6 2X+6 2X  0 2X+3 2X+3 2X+6 2X+6  3 2X+6  0  3  6  X X+3  3 X+6 2X X+6  0  0 2X+6 2X X+3 X+6 X+6 2X+6 X+3 2X+6 X+3 2X  3 X+3 X+6 2X+3  6 2X  X X+6  6 2X  0 X+3  3  X  0 2X+6  X 2X+6 X+3 X+3 2X+6 2X 2X  0 2X+6 X+3  X  3 X+3  X  6 2X+6 X+6 2X+3  X 2X+3  6  X X+3 X+3 2X+6  3

generates a code of length 81 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 152.

Homogenous weight enumerator: w(x)=1x^0+432x^152+814x^153+972x^154+1626x^155+2282x^156+3096x^157+2670x^158+4500x^159+5202x^160+4050x^161+5656x^162+6660x^163+4008x^164+5154x^165+4950x^166+2130x^167+2196x^168+900x^169+600x^170+322x^171+90x^172+282x^173+114x^174+126x^176+48x^177+66x^179+36x^180+42x^182+10x^183+6x^185+6x^186+2x^189

The gray image is a code over GF(3) with n=729, k=10 and d=456.
This code was found by Heurico 1.16 in 16.7 seconds.